Glycerol modulates water permeation through Escherichia coli aquaglyceroporin GlpF.
نویسنده
چکیده
Among aquaglyceroporins that transport both water and glycerol across the cell membrane, Escherichia coli glycerol uptake facilitator (GlpF) is the most thoroughly studied. However, one question remains: Does glycerol modulate water permeation? This study answers this fundamental question by determining the three-dimensional potential of mean force of glycerol along the permeation path through GlpF's conducting pore. There is a deep well near the Asn-Pro-Ala (NPA) motifs (6.5kcal/mol below the bulk level) and a barrier near the selectivity filter (10.1kcal/mol above the well bottom). This profile owes its existence to GlpF's perfect steric arrangement: The glycerol-protein van der Waals interactions are attractive near the NPA but repulsive elsewhere in the conducting pore. In light of the single-file nature of waters and glycerols lining up in GlpF's amphipathic pore, it leads to the following conclusion: Glycerol modulates water permeation in the μM range. At mM concentrations, GlpF is glycerol-saturated and a glycerol residing in the well occludes the conducting pore. Therefore, water permeation is fully correlated to glycerol dissociation that has an Arrhenius activation barrier of 6.5kcal/mol. Validation of this theory is based on the existent in vitro data, some of which have not been given the proper attention they deserved: The Arrhenius activation barriers were found to be 7kcal/mol for water permeation and 9.6kcal/mol for glycerol permeation; The presence of up to 100mM glycerol did not affect the kinetics of water transport with very low permeability, in apparent contradiction with the existent theories that predicted high permeability (0M glycerol).
منابع مشابه
Dynamics and energetics of solute permeation through the Plasmodium falciparum aquaglyceroporin.
The aquaglyceroporin from Plasmodium falciparum (PfAQP) is a potential drug target for the treatment of malaria. It efficiently conducts water and other small solutes, and is proposed to intervene in several crucial physiological processes during the parasitic life cycle. Despite the wealth of experimental data available, a dynamical and energetic description at the single-molecule level of the...
متن کاملDiffusion of glycerol through Escherichia coli aquaglyceroporin GlpF.
The glycerol uptake facilitator, GlpF, a major intrinsic protein found in Escherichia coli, selectively conducts water and glycerol across the inner membrane. The free energy landscape characterizing the assisted transport of glycerol by this homotetrameric aquaglyceroporin has been explored by means of equilibrium molecular dynamics over a timescale spanning 0.12 micros. To overcome the free e...
متن کاملEnergetics of glycerol conduction through aquaglyceroporin GlpF.
Aquaglyceroporin GlpF selectively conducts water and linear polyalcohols, such as glycerol, across the inner membrane of Escherichia coli. We report steered molecular dynamics simulations of glycerol conduction through GlpF, in which external forces accelerate the transchannel conduction in a manner that preserves the intrinsic conduction mechanism. The simulations reveal channel-glycerol hydro...
متن کاملFree-energy landscape of glycerol permeation through aquaglyceroporin GlpF determined from steered molecular dynamics simulations.
The free-energy landscape of glycerol permeation through the aquaglyceroporin GlpF has been estimated in the literature by the nonequilibrium method of steered molecular dynamics (SMD) simulations and by the equilibrium method of adaptive biasing force (ABF) simulations. However, the ABF results qualitatively disagree with the SMD results that were based on the Jarzynski equality (JE) relating ...
متن کاملThe 6.9-A structure of GlpF: a basis for homology modeling of the glycerol channel from Escherichia coli.
The three-dimensional structure of GlpF, the glycerol facilitator of Escherichia coli, was determined by cryo-electron microscopy. The 6.9-A density map calculated from images of two-dimensional crystals shows the GlpF helices to be similar to those of AQP1, the erythrocyte water channel. While the helix arrangement of GlpF does not reflect the larger pore diameter as seen in the projection map...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1828 8 شماره
صفحات -
تاریخ انتشار 2013